Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Van Eetvelt
1
63 kgOnley
2
62 kgCarisey
3
74 kgKulset
4
58 kgBoroš
6
69 kgReinderink
7
67 kgIsidore
8
67 kgNeuman
9
72 kgSimmons
10
68 kgShmidt
13
76 kgJegat
15
59 kgRolland
16
59 kgGruel
19
70 kgŤoupalík
20
65 kgEg
21
60 kgArtz
22
71 kgPickering
23
55 kgUhlig
24
69 kgRaisberg
27
67 kgBoichis
31
68 kgVan Hautegem
33
64 kgMacKellar
36
69 kgKadlec
37
61 kg
1
63 kgOnley
2
62 kgCarisey
3
74 kgKulset
4
58 kgBoroš
6
69 kgReinderink
7
67 kgIsidore
8
67 kgNeuman
9
72 kgSimmons
10
68 kgShmidt
13
76 kgJegat
15
59 kgRolland
16
59 kgGruel
19
70 kgŤoupalík
20
65 kgEg
21
60 kgArtz
22
71 kgPickering
23
55 kgUhlig
24
69 kgRaisberg
27
67 kgBoichis
31
68 kgVan Hautegem
33
64 kgMacKellar
36
69 kgKadlec
37
61 kg
Weight (KG) →
Result →
76
55
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VAN EETVELT Lennert | 63 |
2 | ONLEY Oscar | 62 |
3 | CARISEY Clément | 74 |
4 | KULSET Johannes | 58 |
6 | BOROŠ Michael | 69 |
7 | REINDERINK Pepijn | 67 |
8 | ISIDORE Noa | 67 |
9 | NEUMAN Dominik | 72 |
10 | SIMMONS Colby | 68 |
13 | SHMIDT Artem | 76 |
15 | JEGAT Jordan | 59 |
16 | ROLLAND Brieuc | 59 |
19 | GRUEL Thibaud | 70 |
20 | ŤOUPALÍK Adam | 65 |
21 | EG Niklas | 60 |
22 | ARTZ Huub | 71 |
23 | PICKERING Finlay | 55 |
24 | UHLIG Henri | 69 |
27 | RAISBERG Nadav | 67 |
31 | BOICHIS Adrien | 68 |
33 | VAN HAUTEGEM Leander | 64 |
36 | MACKELLAR Alastair | 69 |
37 | KADLEC Milan | 61 |