Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 74
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Saramotins
2
75 kgJacobs
4
68 kgVandenbergh
10
86 kgJørgensen
11
60 kgRasch
14
72 kgOliphant
23
66 kgLarsen
26
71 kgSteensen
27
65 kgBoasson Hagen
28
75 kgHegreberg
43
72 kgJohnsen
48
70 kgKristoff
53
78 kgMortensen
54
70 kgNordhaug
59
63 kgReihs
82
75 kgNewton
88
69 kgMouris
94
91 kgEichler
95
78 kgOjavee
106
80 kgDe Gendt
112
73 kg
2
75 kgJacobs
4
68 kgVandenbergh
10
86 kgJørgensen
11
60 kgRasch
14
72 kgOliphant
23
66 kgLarsen
26
71 kgSteensen
27
65 kgBoasson Hagen
28
75 kgHegreberg
43
72 kgJohnsen
48
70 kgKristoff
53
78 kgMortensen
54
70 kgNordhaug
59
63 kgReihs
82
75 kgNewton
88
69 kgMouris
94
91 kgEichler
95
78 kgOjavee
106
80 kgDe Gendt
112
73 kg
Weight (KG) →
Result →
91
60
2
112
# | Rider | Weight (KG) |
---|---|---|
2 | SARAMOTINS Aleksejs | 75 |
4 | JACOBS Pieter | 68 |
10 | VANDENBERGH Stijn | 86 |
11 | JØRGENSEN René | 60 |
14 | RASCH Gabriel | 72 |
23 | OLIPHANT Evan | 66 |
26 | LARSEN Tom | 71 |
27 | STEENSEN André | 65 |
28 | BOASSON HAGEN Edvald | 75 |
43 | HEGREBERG Morten | 72 |
48 | JOHNSEN Lars Kristian | 70 |
53 | KRISTOFF Alexander | 78 |
54 | MORTENSEN Martin | 70 |
59 | NORDHAUG Lars Petter | 63 |
82 | REIHS Michael | 75 |
88 | NEWTON Christopher | 69 |
94 | MOURIS Jens | 91 |
95 | EICHLER Markus | 78 |
106 | OJAVEE Mart | 80 |
112 | DE GENDT Thomas | 73 |