Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Eichler
2
78 kgHegreberg
3
72 kgRasch
4
72 kgOjavee
16
80 kgKristoff
20
78 kgVandenbergh
24
86 kgSaramotins
27
75 kgBoasson Hagen
30
75 kgJørgensen
42
60 kgSteensen
46
65 kgOliphant
50
66 kgLarsen
56
71 kgNordhaug
57
63 kgJacobs
58
68 kgMortensen
59
70 kgJohnsen
72
70 kgReihs
98
75 kgNewton
112
69 kgMouris
113
91 kgDe Gendt
121
73 kg
2
78 kgHegreberg
3
72 kgRasch
4
72 kgOjavee
16
80 kgKristoff
20
78 kgVandenbergh
24
86 kgSaramotins
27
75 kgBoasson Hagen
30
75 kgJørgensen
42
60 kgSteensen
46
65 kgOliphant
50
66 kgLarsen
56
71 kgNordhaug
57
63 kgJacobs
58
68 kgMortensen
59
70 kgJohnsen
72
70 kgReihs
98
75 kgNewton
112
69 kgMouris
113
91 kgDe Gendt
121
73 kg
Weight (KG) →
Result →
91
60
2
121
# | Rider | Weight (KG) |
---|---|---|
2 | EICHLER Markus | 78 |
3 | HEGREBERG Morten | 72 |
4 | RASCH Gabriel | 72 |
16 | OJAVEE Mart | 80 |
20 | KRISTOFF Alexander | 78 |
24 | VANDENBERGH Stijn | 86 |
27 | SARAMOTINS Aleksejs | 75 |
30 | BOASSON HAGEN Edvald | 75 |
42 | JØRGENSEN René | 60 |
46 | STEENSEN André | 65 |
50 | OLIPHANT Evan | 66 |
56 | LARSEN Tom | 71 |
57 | NORDHAUG Lars Petter | 63 |
58 | JACOBS Pieter | 68 |
59 | MORTENSEN Martin | 70 |
72 | JOHNSEN Lars Kristian | 70 |
98 | REIHS Michael | 75 |
112 | NEWTON Christopher | 69 |
113 | MOURIS Jens | 91 |
121 | DE GENDT Thomas | 73 |