Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Boasson Hagen
1
75 kgRasch
4
72 kgNordhaug
8
63 kgJacobs
9
68 kgVandenbergh
10
86 kgSaramotins
14
75 kgMortensen
18
70 kgLarsen
23
71 kgHegreberg
24
72 kgOliphant
27
66 kgJohnsen
32
70 kgKristoff
52
78 kgNewton
67
69 kgDe Gendt
71
73 kgJørgensen
72
60 kgEichler
77
78 kgReihs
79
75 kgOjavee
97
80 kgMouris
99
91 kgSteensen
112
65 kg
1
75 kgRasch
4
72 kgNordhaug
8
63 kgJacobs
9
68 kgVandenbergh
10
86 kgSaramotins
14
75 kgMortensen
18
70 kgLarsen
23
71 kgHegreberg
24
72 kgOliphant
27
66 kgJohnsen
32
70 kgKristoff
52
78 kgNewton
67
69 kgDe Gendt
71
73 kgJørgensen
72
60 kgEichler
77
78 kgReihs
79
75 kgOjavee
97
80 kgMouris
99
91 kgSteensen
112
65 kg
Weight (KG) →
Result →
91
60
1
112
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
4 | RASCH Gabriel | 72 |
8 | NORDHAUG Lars Petter | 63 |
9 | JACOBS Pieter | 68 |
10 | VANDENBERGH Stijn | 86 |
14 | SARAMOTINS Aleksejs | 75 |
18 | MORTENSEN Martin | 70 |
23 | LARSEN Tom | 71 |
24 | HEGREBERG Morten | 72 |
27 | OLIPHANT Evan | 66 |
32 | JOHNSEN Lars Kristian | 70 |
52 | KRISTOFF Alexander | 78 |
67 | NEWTON Christopher | 69 |
71 | DE GENDT Thomas | 73 |
72 | JØRGENSEN René | 60 |
77 | EICHLER Markus | 78 |
79 | REIHS Michael | 75 |
97 | OJAVEE Mart | 80 |
99 | MOURIS Jens | 91 |
112 | STEENSEN André | 65 |