Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 135
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Hegreberg
3
72 kgBoasson Hagen
5
75 kgNordhaug
6
63 kgRasch
7
72 kgOliphant
10
66 kgJacobs
14
68 kgLarsen
16
71 kgVandenbergh
17
86 kgMortensen
18
70 kgSteensen
24
65 kgJørgensen
30
60 kgJohnsen
37
70 kgKristoff
39
78 kgSaramotins
46
75 kgDe Gendt
50
73 kgOjavee
72
80 kgReihs
92
75 kgMouris
97
91 kgEichler
98
78 kg
3
72 kgBoasson Hagen
5
75 kgNordhaug
6
63 kgRasch
7
72 kgOliphant
10
66 kgJacobs
14
68 kgLarsen
16
71 kgVandenbergh
17
86 kgMortensen
18
70 kgSteensen
24
65 kgJørgensen
30
60 kgJohnsen
37
70 kgKristoff
39
78 kgSaramotins
46
75 kgDe Gendt
50
73 kgOjavee
72
80 kgReihs
92
75 kgMouris
97
91 kgEichler
98
78 kg
Weight (KG) →
Result →
91
60
3
98
# | Rider | Weight (KG) |
---|---|---|
3 | HEGREBERG Morten | 72 |
5 | BOASSON HAGEN Edvald | 75 |
6 | NORDHAUG Lars Petter | 63 |
7 | RASCH Gabriel | 72 |
10 | OLIPHANT Evan | 66 |
14 | JACOBS Pieter | 68 |
16 | LARSEN Tom | 71 |
17 | VANDENBERGH Stijn | 86 |
18 | MORTENSEN Martin | 70 |
24 | STEENSEN André | 65 |
30 | JØRGENSEN René | 60 |
37 | JOHNSEN Lars Kristian | 70 |
39 | KRISTOFF Alexander | 78 |
46 | SARAMOTINS Aleksejs | 75 |
50 | DE GENDT Thomas | 73 |
72 | OJAVEE Mart | 80 |
92 | REIHS Michael | 75 |
97 | MOURIS Jens | 91 |
98 | EICHLER Markus | 78 |