Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 126
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Boasson Hagen
1
75 kgSchmitz
2
77 kgvan Leijen
5
73 kgKessiakoff
6
61 kgRasch
8
72 kgSteensen
9
65 kgRiis Andersen
10
67 kgCurvers
11
73 kgFuglsang
12
67 kgLarsen
27
71 kgBellemakers
35
75 kgvan Amerongen
37
70 kgHegreberg
39
72 kgWilmann
45
69 kgNordhaug
46
63 kgLindgren
63
59 kg
1
75 kgSchmitz
2
77 kgvan Leijen
5
73 kgKessiakoff
6
61 kgRasch
8
72 kgSteensen
9
65 kgRiis Andersen
10
67 kgCurvers
11
73 kgFuglsang
12
67 kgLarsen
27
71 kgBellemakers
35
75 kgvan Amerongen
37
70 kgHegreberg
39
72 kgWilmann
45
69 kgNordhaug
46
63 kgLindgren
63
59 kg
Weight (KG) →
Result →
77
59
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
2 | SCHMITZ Bram | 77 |
5 | VAN LEIJEN Joost | 73 |
6 | KESSIAKOFF Fredrik | 61 |
8 | RASCH Gabriel | 72 |
9 | STEENSEN André | 65 |
10 | RIIS ANDERSEN Peter | 67 |
11 | CURVERS Roy | 73 |
12 | FUGLSANG Jakob | 67 |
27 | LARSEN Tom | 71 |
35 | BELLEMAKERS Dirk | 75 |
37 | VAN AMERONGEN Thijs | 70 |
39 | HEGREBERG Morten | 72 |
45 | WILMANN Frederik | 69 |
46 | NORDHAUG Lars Petter | 63 |
63 | LINDGREN Emil | 59 |