Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Boasson Hagen
1
75 kgRasch
5
72 kgSchmitz
6
77 kgHegreberg
8
72 kgNordhaug
9
63 kgRiis Andersen
10
67 kgSteensen
11
65 kgvan Amerongen
18
70 kgFuglsang
20
67 kgKessiakoff
22
61 kgLarsen
24
71 kgvan Leijen
28
73 kgLindgren
39
59 kgBellemakers
51
75 kgCurvers
58
73 kgWilmann
91
69 kg
1
75 kgRasch
5
72 kgSchmitz
6
77 kgHegreberg
8
72 kgNordhaug
9
63 kgRiis Andersen
10
67 kgSteensen
11
65 kgvan Amerongen
18
70 kgFuglsang
20
67 kgKessiakoff
22
61 kgLarsen
24
71 kgvan Leijen
28
73 kgLindgren
39
59 kgBellemakers
51
75 kgCurvers
58
73 kgWilmann
91
69 kg
Weight (KG) →
Result →
77
59
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
5 | RASCH Gabriel | 72 |
6 | SCHMITZ Bram | 77 |
8 | HEGREBERG Morten | 72 |
9 | NORDHAUG Lars Petter | 63 |
10 | RIIS ANDERSEN Peter | 67 |
11 | STEENSEN André | 65 |
18 | VAN AMERONGEN Thijs | 70 |
20 | FUGLSANG Jakob | 67 |
22 | KESSIAKOFF Fredrik | 61 |
24 | LARSEN Tom | 71 |
28 | VAN LEIJEN Joost | 73 |
39 | LINDGREN Emil | 59 |
51 | BELLEMAKERS Dirk | 75 |
58 | CURVERS Roy | 73 |
91 | WILMANN Frederik | 69 |