Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 72
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Boasson Hagen
1
75 kgRasch
3
72 kgNordhaug
4
63 kgRiis Andersen
5
67 kgFuglsang
11
67 kgLindgren
14
59 kgSchmitz
15
77 kgKessiakoff
18
61 kgvan Leijen
20
73 kgSteensen
29
65 kgLarsen
30
71 kgCurvers
44
73 kgvan Amerongen
46
70 kgHegreberg
50
72 kgWilmann
88
69 kgBellemakers
94
75 kg
1
75 kgRasch
3
72 kgNordhaug
4
63 kgRiis Andersen
5
67 kgFuglsang
11
67 kgLindgren
14
59 kgSchmitz
15
77 kgKessiakoff
18
61 kgvan Leijen
20
73 kgSteensen
29
65 kgLarsen
30
71 kgCurvers
44
73 kgvan Amerongen
46
70 kgHegreberg
50
72 kgWilmann
88
69 kgBellemakers
94
75 kg
Weight (KG) →
Result →
77
59
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
3 | RASCH Gabriel | 72 |
4 | NORDHAUG Lars Petter | 63 |
5 | RIIS ANDERSEN Peter | 67 |
11 | FUGLSANG Jakob | 67 |
14 | LINDGREN Emil | 59 |
15 | SCHMITZ Bram | 77 |
18 | KESSIAKOFF Fredrik | 61 |
20 | VAN LEIJEN Joost | 73 |
29 | STEENSEN André | 65 |
30 | LARSEN Tom | 71 |
44 | CURVERS Roy | 73 |
46 | VAN AMERONGEN Thijs | 70 |
50 | HEGREBERG Morten | 72 |
88 | WILMANN Frederik | 69 |
94 | BELLEMAKERS Dirk | 75 |