Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Riis Andersen
1
67 kgHegreberg
3
72 kgCurvers
5
73 kgBoasson Hagen
6
75 kgvan Leijen
7
73 kgRasch
11
72 kgNordhaug
12
63 kgLindgren
14
59 kgLarsen
15
71 kgKessiakoff
17
61 kgFuglsang
20
67 kgSteensen
22
65 kgSchmitz
25
77 kgBellemakers
31
75 kgvan Amerongen
56
70 kgWilmann
88
69 kg
1
67 kgHegreberg
3
72 kgCurvers
5
73 kgBoasson Hagen
6
75 kgvan Leijen
7
73 kgRasch
11
72 kgNordhaug
12
63 kgLindgren
14
59 kgLarsen
15
71 kgKessiakoff
17
61 kgFuglsang
20
67 kgSteensen
22
65 kgSchmitz
25
77 kgBellemakers
31
75 kgvan Amerongen
56
70 kgWilmann
88
69 kg
Weight (KG) →
Result →
77
59
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | RIIS ANDERSEN Peter | 67 |
3 | HEGREBERG Morten | 72 |
5 | CURVERS Roy | 73 |
6 | BOASSON HAGEN Edvald | 75 |
7 | VAN LEIJEN Joost | 73 |
11 | RASCH Gabriel | 72 |
12 | NORDHAUG Lars Petter | 63 |
14 | LINDGREN Emil | 59 |
15 | LARSEN Tom | 71 |
17 | KESSIAKOFF Fredrik | 61 |
20 | FUGLSANG Jakob | 67 |
22 | STEENSEN André | 65 |
25 | SCHMITZ Bram | 77 |
31 | BELLEMAKERS Dirk | 75 |
56 | VAN AMERONGEN Thijs | 70 |
88 | WILMANN Frederik | 69 |