Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 94
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Boasson Hagen
1
75 kgHegreberg
3
72 kgRiis Andersen
5
67 kgvan Leijen
6
73 kgNordhaug
7
63 kgRasch
10
72 kgKessiakoff
13
61 kgFuglsang
15
67 kgLindgren
17
59 kgLarsen
20
71 kgCurvers
22
73 kgSteensen
24
65 kgvan Amerongen
26
70 kgWilmann
32
69 kgSchmitz
73
77 kgBellemakers
74
75 kg
1
75 kgHegreberg
3
72 kgRiis Andersen
5
67 kgvan Leijen
6
73 kgNordhaug
7
63 kgRasch
10
72 kgKessiakoff
13
61 kgFuglsang
15
67 kgLindgren
17
59 kgLarsen
20
71 kgCurvers
22
73 kgSteensen
24
65 kgvan Amerongen
26
70 kgWilmann
32
69 kgSchmitz
73
77 kgBellemakers
74
75 kg
Weight (KG) →
Result →
77
59
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
3 | HEGREBERG Morten | 72 |
5 | RIIS ANDERSEN Peter | 67 |
6 | VAN LEIJEN Joost | 73 |
7 | NORDHAUG Lars Petter | 63 |
10 | RASCH Gabriel | 72 |
13 | KESSIAKOFF Fredrik | 61 |
15 | FUGLSANG Jakob | 67 |
17 | LINDGREN Emil | 59 |
20 | LARSEN Tom | 71 |
22 | CURVERS Roy | 73 |
24 | STEENSEN André | 65 |
26 | VAN AMERONGEN Thijs | 70 |
32 | WILMANN Frederik | 69 |
73 | SCHMITZ Bram | 77 |
74 | BELLEMAKERS Dirk | 75 |