Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Kristoff
1
78 kgAaen Jørgensen
8
63 kgReihs
10
75 kgElliott
13
76 kgHegreberg
14
72 kgFirsanov
19
58 kgHoogerland
20
65 kgJohansen
21
78 kgSaramotins
24
75 kgLaengen
25
79 kgPedersen
28
62 kgWilmann
29
69 kgVandborg
30
75 kgNordhaug
31
63 kgDowning
33
64 kgvan Diermen
44
69 kgGmelich Meijling
57
77 kgMørkøv
66
71 kgvan Amerongen
80
70 kgTerpstra
110
64 kgvan Leijen
123
73 kg
1
78 kgAaen Jørgensen
8
63 kgReihs
10
75 kgElliott
13
76 kgHegreberg
14
72 kgFirsanov
19
58 kgHoogerland
20
65 kgJohansen
21
78 kgSaramotins
24
75 kgLaengen
25
79 kgPedersen
28
62 kgWilmann
29
69 kgVandborg
30
75 kgNordhaug
31
63 kgDowning
33
64 kgvan Diermen
44
69 kgGmelich Meijling
57
77 kgMørkøv
66
71 kgvan Amerongen
80
70 kgTerpstra
110
64 kgvan Leijen
123
73 kg
Weight (KG) →
Result →
79
58
1
123
# | Rider | Weight (KG) |
---|---|---|
1 | KRISTOFF Alexander | 78 |
8 | AAEN JØRGENSEN Jonas | 63 |
10 | REIHS Michael | 75 |
13 | ELLIOTT Malcolm | 76 |
14 | HEGREBERG Morten | 72 |
19 | FIRSANOV Sergey | 58 |
20 | HOOGERLAND Johnny | 65 |
21 | JOHANSEN Allan | 78 |
24 | SARAMOTINS Aleksejs | 75 |
25 | LAENGEN Vegard Stake | 79 |
28 | PEDERSEN Martin | 62 |
29 | WILMANN Frederik | 69 |
30 | VANDBORG Brian Bach | 75 |
31 | NORDHAUG Lars Petter | 63 |
33 | DOWNING Russell | 64 |
44 | VAN DIERMEN Johnny | 69 |
57 | GMELICH MEIJLING Jarno | 77 |
66 | MØRKØV Michael | 71 |
80 | VAN AMERONGEN Thijs | 70 |
110 | TERPSTRA Mike | 64 |
123 | VAN LEIJEN Joost | 73 |