Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 81
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Aaen Jørgensen
1
63 kgKristoff
2
78 kgFirsanov
5
58 kgvan Leijen
6
73 kgDidier
8
68 kgNordhaug
10
63 kgWilmann
16
69 kgde Baat
19
66 kgPedersen
22
62 kgJovanović
26
60 kgPauwels
29
60 kgMeeusen
33
62 kgJohansen
40
78 kgChristensen
51
69 kgSchmitz
56
77 kgBreen
64
74 kgden Bakker
81
71 kgHøydal
109
72 kg
1
63 kgKristoff
2
78 kgFirsanov
5
58 kgvan Leijen
6
73 kgDidier
8
68 kgNordhaug
10
63 kgWilmann
16
69 kgde Baat
19
66 kgPedersen
22
62 kgJovanović
26
60 kgPauwels
29
60 kgMeeusen
33
62 kgJohansen
40
78 kgChristensen
51
69 kgSchmitz
56
77 kgBreen
64
74 kgden Bakker
81
71 kgHøydal
109
72 kg
Weight (KG) →
Result →
78
58
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | AAEN JØRGENSEN Jonas | 63 |
2 | KRISTOFF Alexander | 78 |
5 | FIRSANOV Sergey | 58 |
6 | VAN LEIJEN Joost | 73 |
8 | DIDIER Laurent | 68 |
10 | NORDHAUG Lars Petter | 63 |
16 | WILMANN Frederik | 69 |
19 | DE BAAT Arjen | 66 |
22 | PEDERSEN Martin | 62 |
26 | JOVANOVIĆ Nebojša | 60 |
29 | PAUWELS Kevin | 60 |
33 | MEEUSEN Tom | 62 |
40 | JOHANSEN Allan | 78 |
51 | CHRISTENSEN Mads | 69 |
56 | SCHMITZ Bram | 77 |
64 | BREEN Vegard | 74 |
81 | DEN BAKKER Maarten | 71 |
109 | HØYDAL Rune | 72 |