Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Firsanov
1
58 kgDidier
4
68 kgNordhaug
5
63 kgvan Leijen
6
73 kgWilmann
8
69 kgKristoff
12
78 kgAaen Jørgensen
13
63 kgPauwels
15
60 kgJohansen
16
78 kgJovanović
21
60 kgBreen
25
74 kgPedersen
29
62 kgChristensen
34
69 kgSchmitz
54
77 kgMeeusen
57
62 kgLarsen
64
71 kgden Bakker
77
71 kgde Baat
95
66 kgHøydal
104
72 kg
1
58 kgDidier
4
68 kgNordhaug
5
63 kgvan Leijen
6
73 kgWilmann
8
69 kgKristoff
12
78 kgAaen Jørgensen
13
63 kgPauwels
15
60 kgJohansen
16
78 kgJovanović
21
60 kgBreen
25
74 kgPedersen
29
62 kgChristensen
34
69 kgSchmitz
54
77 kgMeeusen
57
62 kgLarsen
64
71 kgden Bakker
77
71 kgde Baat
95
66 kgHøydal
104
72 kg
Weight (KG) →
Result →
78
58
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | FIRSANOV Sergey | 58 |
4 | DIDIER Laurent | 68 |
5 | NORDHAUG Lars Petter | 63 |
6 | VAN LEIJEN Joost | 73 |
8 | WILMANN Frederik | 69 |
12 | KRISTOFF Alexander | 78 |
13 | AAEN JØRGENSEN Jonas | 63 |
15 | PAUWELS Kevin | 60 |
16 | JOHANSEN Allan | 78 |
21 | JOVANOVIĆ Nebojša | 60 |
25 | BREEN Vegard | 74 |
29 | PEDERSEN Martin | 62 |
34 | CHRISTENSEN Mads | 69 |
54 | SCHMITZ Bram | 77 |
57 | MEEUSEN Tom | 62 |
64 | LARSEN Tom | 71 |
77 | DEN BAKKER Maarten | 71 |
95 | DE BAAT Arjen | 66 |
104 | HØYDAL Rune | 72 |