Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kristoff
1
78 kgvan Leijen
4
73 kgNordhaug
7
63 kgDidier
8
68 kgAaen Jørgensen
10
63 kgFirsanov
12
58 kgMeeusen
14
62 kgWilmann
16
69 kgde Baat
17
66 kgJovanović
21
60 kgJohansen
34
78 kgSchmitz
36
77 kgPedersen
37
62 kgBreen
46
74 kgden Bakker
60
71 kgHøydal
98
72 kgPauwels
112
60 kgChristensen
116
69 kg
1
78 kgvan Leijen
4
73 kgNordhaug
7
63 kgDidier
8
68 kgAaen Jørgensen
10
63 kgFirsanov
12
58 kgMeeusen
14
62 kgWilmann
16
69 kgde Baat
17
66 kgJovanović
21
60 kgJohansen
34
78 kgSchmitz
36
77 kgPedersen
37
62 kgBreen
46
74 kgden Bakker
60
71 kgHøydal
98
72 kgPauwels
112
60 kgChristensen
116
69 kg
Weight (KG) →
Result →
78
58
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | KRISTOFF Alexander | 78 |
4 | VAN LEIJEN Joost | 73 |
7 | NORDHAUG Lars Petter | 63 |
8 | DIDIER Laurent | 68 |
10 | AAEN JØRGENSEN Jonas | 63 |
12 | FIRSANOV Sergey | 58 |
14 | MEEUSEN Tom | 62 |
16 | WILMANN Frederik | 69 |
17 | DE BAAT Arjen | 66 |
21 | JOVANOVIĆ Nebojša | 60 |
34 | JOHANSEN Allan | 78 |
36 | SCHMITZ Bram | 77 |
37 | PEDERSEN Martin | 62 |
46 | BREEN Vegard | 74 |
60 | DEN BAKKER Maarten | 71 |
98 | HØYDAL Rune | 72 |
112 | PAUWELS Kevin | 60 |
116 | CHRISTENSEN Mads | 69 |