Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
van Leijen
2
73 kgNordhaug
7
63 kgFirsanov
10
58 kgWilmann
11
69 kgPedersen
13
62 kgBreen
14
74 kgJovanović
19
60 kgDidier
34
68 kgden Bakker
35
71 kgSchmitz
37
77 kgJohansen
48
78 kgKristoff
62
78 kgMeeusen
65
62 kgde Baat
85
66 kgAaen Jørgensen
86
63 kgPauwels
98
60 kgChristensen
99
69 kg
2
73 kgNordhaug
7
63 kgFirsanov
10
58 kgWilmann
11
69 kgPedersen
13
62 kgBreen
14
74 kgJovanović
19
60 kgDidier
34
68 kgden Bakker
35
71 kgSchmitz
37
77 kgJohansen
48
78 kgKristoff
62
78 kgMeeusen
65
62 kgde Baat
85
66 kgAaen Jørgensen
86
63 kgPauwels
98
60 kgChristensen
99
69 kg
Weight (KG) →
Result →
78
58
2
99
# | Rider | Weight (KG) |
---|---|---|
2 | VAN LEIJEN Joost | 73 |
7 | NORDHAUG Lars Petter | 63 |
10 | FIRSANOV Sergey | 58 |
11 | WILMANN Frederik | 69 |
13 | PEDERSEN Martin | 62 |
14 | BREEN Vegard | 74 |
19 | JOVANOVIĆ Nebojša | 60 |
34 | DIDIER Laurent | 68 |
35 | DEN BAKKER Maarten | 71 |
37 | SCHMITZ Bram | 77 |
48 | JOHANSEN Allan | 78 |
62 | KRISTOFF Alexander | 78 |
65 | MEEUSEN Tom | 62 |
85 | DE BAAT Arjen | 66 |
86 | AAEN JØRGENSEN Jonas | 63 |
98 | PAUWELS Kevin | 60 |
99 | CHRISTENSEN Mads | 69 |