Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Wetterhall
1
70 kgMarkus
4
75 kgMatthews
8
72 kgDennis
10
72 kgKrizek
11
74 kgFirsanov
12
58 kgKelderman
14
65 kgAsselman
15
69 kgPfingsten
16
69 kgvan der Lijke
17
61 kgKrotký
18
73 kgReihs
23
75 kgSchoonbroodt
30
78 kgHepburn
35
77 kgJørgensen
39
60 kgDurbridge
51
78 kgChristensen
56
69 kgJovanović
57
60 kgBroniš
58
74 kgLudvigsson
59
76 kgBreen
76
74 kgMoberg Jørgensen
106
73 kg
1
70 kgMarkus
4
75 kgMatthews
8
72 kgDennis
10
72 kgKrizek
11
74 kgFirsanov
12
58 kgKelderman
14
65 kgAsselman
15
69 kgPfingsten
16
69 kgvan der Lijke
17
61 kgKrotký
18
73 kgReihs
23
75 kgSchoonbroodt
30
78 kgHepburn
35
77 kgJørgensen
39
60 kgDurbridge
51
78 kgChristensen
56
69 kgJovanović
57
60 kgBroniš
58
74 kgLudvigsson
59
76 kgBreen
76
74 kgMoberg Jørgensen
106
73 kg
Weight (KG) →
Result →
78
58
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | WETTERHALL Alexander | 70 |
4 | MARKUS Barry | 75 |
8 | MATTHEWS Michael | 72 |
10 | DENNIS Rohan | 72 |
11 | KRIZEK Matthias | 74 |
12 | FIRSANOV Sergey | 58 |
14 | KELDERMAN Wilco | 65 |
15 | ASSELMAN Jesper | 69 |
16 | PFINGSTEN Christoph | 69 |
17 | VAN DER LIJKE Nick | 61 |
18 | KROTKÝ Rostislav | 73 |
23 | REIHS Michael | 75 |
30 | SCHOONBROODT Bob | 78 |
35 | HEPBURN Michael | 77 |
39 | JØRGENSEN René | 60 |
51 | DURBRIDGE Luke | 78 |
56 | CHRISTENSEN Mads | 69 |
57 | JOVANOVIĆ Nebojša | 60 |
58 | BRONIŠ Roman | 74 |
59 | LUDVIGSSON Tobias | 76 |
76 | BREEN Vegard | 74 |
106 | MOBERG JØRGENSEN Christian | 73 |