Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 54
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Firsanov
2
58 kgKelderman
6
65 kgMatthews
7
72 kgPfingsten
8
69 kgAsselman
11
69 kgDennis
22
72 kgDurbridge
24
78 kgvan der Lijke
25
61 kgSchoonbroodt
29
78 kgWetterhall
34
70 kgLudvigsson
36
76 kgKrotký
43
73 kgJørgensen
46
60 kgBroniš
48
74 kgKrizek
54
74 kgJovanović
55
60 kgReihs
67
75 kgMarkus
69
75 kgBreen
79
74 kgMoberg Jørgensen
90
73 kg
2
58 kgKelderman
6
65 kgMatthews
7
72 kgPfingsten
8
69 kgAsselman
11
69 kgDennis
22
72 kgDurbridge
24
78 kgvan der Lijke
25
61 kgSchoonbroodt
29
78 kgWetterhall
34
70 kgLudvigsson
36
76 kgKrotký
43
73 kgJørgensen
46
60 kgBroniš
48
74 kgKrizek
54
74 kgJovanović
55
60 kgReihs
67
75 kgMarkus
69
75 kgBreen
79
74 kgMoberg Jørgensen
90
73 kg
Weight (KG) →
Result →
78
58
2
90
# | Rider | Weight (KG) |
---|---|---|
2 | FIRSANOV Sergey | 58 |
6 | KELDERMAN Wilco | 65 |
7 | MATTHEWS Michael | 72 |
8 | PFINGSTEN Christoph | 69 |
11 | ASSELMAN Jesper | 69 |
22 | DENNIS Rohan | 72 |
24 | DURBRIDGE Luke | 78 |
25 | VAN DER LIJKE Nick | 61 |
29 | SCHOONBROODT Bob | 78 |
34 | WETTERHALL Alexander | 70 |
36 | LUDVIGSSON Tobias | 76 |
43 | KROTKÝ Rostislav | 73 |
46 | JØRGENSEN René | 60 |
48 | BRONIŠ Roman | 74 |
54 | KRIZEK Matthias | 74 |
55 | JOVANOVIĆ Nebojša | 60 |
67 | REIHS Michael | 75 |
69 | MARKUS Barry | 75 |
79 | BREEN Vegard | 74 |
90 | MOBERG JØRGENSEN Christian | 73 |