Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Pfingsten
1
69 kgLudvigsson
4
76 kgMatthews
6
72 kgFirsanov
11
58 kgDennis
12
72 kgBroniš
15
74 kgDurbridge
16
78 kgAsselman
17
69 kgvan der Lijke
19
61 kgKrotký
20
73 kgJovanović
27
60 kgKelderman
30
65 kgKrizek
34
74 kgSchoonbroodt
37
78 kgJørgensen
41
60 kgWetterhall
59
70 kgMarkus
69
75 kg
1
69 kgLudvigsson
4
76 kgMatthews
6
72 kgFirsanov
11
58 kgDennis
12
72 kgBroniš
15
74 kgDurbridge
16
78 kgAsselman
17
69 kgvan der Lijke
19
61 kgKrotký
20
73 kgJovanović
27
60 kgKelderman
30
65 kgKrizek
34
74 kgSchoonbroodt
37
78 kgJørgensen
41
60 kgWetterhall
59
70 kgMarkus
69
75 kg
Weight (KG) →
Result →
78
58
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | PFINGSTEN Christoph | 69 |
4 | LUDVIGSSON Tobias | 76 |
6 | MATTHEWS Michael | 72 |
11 | FIRSANOV Sergey | 58 |
12 | DENNIS Rohan | 72 |
15 | BRONIŠ Roman | 74 |
16 | DURBRIDGE Luke | 78 |
17 | ASSELMAN Jesper | 69 |
19 | VAN DER LIJKE Nick | 61 |
20 | KROTKÝ Rostislav | 73 |
27 | JOVANOVIĆ Nebojša | 60 |
30 | KELDERMAN Wilco | 65 |
34 | KRIZEK Matthias | 74 |
37 | SCHOONBROODT Bob | 78 |
41 | JØRGENSEN René | 60 |
59 | WETTERHALL Alexander | 70 |
69 | MARKUS Barry | 75 |