Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Kragh Andersen
1
72 kgKragh Andersen
2
73 kgEiking
3
75 kgLaengen
4
79 kgJensen
5
67 kgKamp
7
74 kgWürtz Schmidt
9
70 kgGregaard
10
66 kgRiesebeek
12
78 kgGmelich Meijling
13
77 kgAasvold
18
61 kgVangstad
19
70 kgGalta
21
78 kgHoelgaard
22
74 kgAbrahamsen
23
78 kgHagen
28
65 kgLander
29
70 kgLunke
34
69 kgRahbek
35
66 kg
1
72 kgKragh Andersen
2
73 kgEiking
3
75 kgLaengen
4
79 kgJensen
5
67 kgKamp
7
74 kgWürtz Schmidt
9
70 kgGregaard
10
66 kgRiesebeek
12
78 kgGmelich Meijling
13
77 kgAasvold
18
61 kgVangstad
19
70 kgGalta
21
78 kgHoelgaard
22
74 kgAbrahamsen
23
78 kgHagen
28
65 kgLander
29
70 kgLunke
34
69 kgRahbek
35
66 kg
Weight (KG) →
Result →
79
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | KRAGH ANDERSEN Asbjørn | 72 |
2 | KRAGH ANDERSEN Søren | 73 |
3 | EIKING Odd Christian | 75 |
4 | LAENGEN Vegard Stake | 79 |
5 | JENSEN August | 67 |
7 | KAMP Alexander | 74 |
9 | WÜRTZ SCHMIDT Mads | 70 |
10 | GREGAARD Jonas | 66 |
12 | RIESEBEEK Oscar | 78 |
13 | GMELICH MEIJLING Jarno | 77 |
18 | AASVOLD Kristian | 61 |
19 | VANGSTAD Andreas | 70 |
21 | GALTA Fredrik Strand | 78 |
22 | HOELGAARD Markus | 74 |
23 | ABRAHAMSEN Jonas | 78 |
28 | HAGEN Carl Fredrik | 65 |
29 | LANDER Sebastian | 70 |
34 | LUNKE Sindre | 69 |
35 | RAHBEK Mads | 66 |