Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 91
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Roth
1
70 kgRollin
2
83 kgClarke
3
68 kgVeilleux
4
75 kgLacombe
10
81 kgKohler
11
69 kgClarke
13
70 kgParisien
14
64 kgStewart
21
72 kgWilson
26
72 kgDomínguez
27
72 kgWyss
33
65 kgFrattini
35
63 kgVogels
37
75 kgHaedo
41
64 kgCruz
42
66 kgEldridge
51
84 kgBazzana
84
63.5 kg
1
70 kgRollin
2
83 kgClarke
3
68 kgVeilleux
4
75 kgLacombe
10
81 kgKohler
11
69 kgClarke
13
70 kgParisien
14
64 kgStewart
21
72 kgWilson
26
72 kgDomínguez
27
72 kgWyss
33
65 kgFrattini
35
63 kgVogels
37
75 kgHaedo
41
64 kgCruz
42
66 kgEldridge
51
84 kgBazzana
84
63.5 kg
Weight (KG) →
Result →
84
63
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | ROTH Ryan | 70 |
2 | ROLLIN Dominique | 83 |
3 | CLARKE Jonathan | 68 |
4 | VEILLEUX David | 75 |
10 | LACOMBE Keven | 81 |
11 | KOHLER Martin | 69 |
13 | CLARKE Hilton | 70 |
14 | PARISIEN François | 64 |
21 | STEWART Jackson | 72 |
26 | WILSON Matthew | 72 |
27 | DOMÍNGUEZ Iván | 72 |
33 | WYSS Danilo | 65 |
35 | FRATTINI Davide | 63 |
37 | VOGELS Henk | 75 |
41 | HAEDO Lucas Sebastián | 64 |
42 | CRUZ Antonio | 66 |
51 | ELDRIDGE Joe | 84 |
84 | BAZZANA Alessandro | 63.5 |