Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 36
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Rollin
1
83 kgBazzana
2
63.5 kgKohler
4
69 kgCruz
8
66 kgStewart
9
72 kgFrattini
11
63 kgClarke
13
68 kgVeilleux
15
75 kgWyss
16
65 kgRoth
20
70 kgDomínguez
22
72 kgLacombe
31
81 kgParisien
35
64 kgWilson
44
72 kgHaedo
48
64 kgVogels
57
75 kgEldridge
69
84 kgClarke
76
70 kg
1
83 kgBazzana
2
63.5 kgKohler
4
69 kgCruz
8
66 kgStewart
9
72 kgFrattini
11
63 kgClarke
13
68 kgVeilleux
15
75 kgWyss
16
65 kgRoth
20
70 kgDomínguez
22
72 kgLacombe
31
81 kgParisien
35
64 kgWilson
44
72 kgHaedo
48
64 kgVogels
57
75 kgEldridge
69
84 kgClarke
76
70 kg
Weight (KG) →
Result →
84
63
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | ROLLIN Dominique | 83 |
2 | BAZZANA Alessandro | 63.5 |
4 | KOHLER Martin | 69 |
8 | CRUZ Antonio | 66 |
9 | STEWART Jackson | 72 |
11 | FRATTINI Davide | 63 |
13 | CLARKE Jonathan | 68 |
15 | VEILLEUX David | 75 |
16 | WYSS Danilo | 65 |
20 | ROTH Ryan | 70 |
22 | DOMÍNGUEZ Iván | 72 |
31 | LACOMBE Keven | 81 |
35 | PARISIEN François | 64 |
44 | WILSON Matthew | 72 |
48 | HAEDO Lucas Sebastián | 64 |
57 | VOGELS Henk | 75 |
69 | ELDRIDGE Joe | 84 |
76 | CLARKE Hilton | 70 |