Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Le Mével
1
61 kgCharpenteau
2
68 kgPineau
4
65 kgVansummeren
5
79 kgPortal
7
70 kgLang
8
77 kgCalzati
9
68 kgCoutouly
15
72 kgDe Weert
19
70 kgHary
20
68 kgWeening
23
68 kgVan Hecke
29
69 kgMcCarty
30
68 kgCommeyne
31
70 kgCaethoven
32
67 kgBuffaz
36
64 kgBoucher
37
78 kgEngoulvent
40
82 kgGeslin
41
68 kgBaumann
45
72 kgDumoulin
47
57 kg
1
61 kgCharpenteau
2
68 kgPineau
4
65 kgVansummeren
5
79 kgPortal
7
70 kgLang
8
77 kgCalzati
9
68 kgCoutouly
15
72 kgDe Weert
19
70 kgHary
20
68 kgWeening
23
68 kgVan Hecke
29
69 kgMcCarty
30
68 kgCommeyne
31
70 kgCaethoven
32
67 kgBuffaz
36
64 kgBoucher
37
78 kgEngoulvent
40
82 kgGeslin
41
68 kgBaumann
45
72 kgDumoulin
47
57 kg
Weight (KG) →
Result →
82
57
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | LE MÉVEL Christophe | 61 |
2 | CHARPENTEAU Yohann | 68 |
4 | PINEAU Jérôme | 65 |
5 | VANSUMMEREN Johan | 79 |
7 | PORTAL Nicolas | 70 |
8 | LANG Sebastian | 77 |
9 | CALZATI Sylvain | 68 |
15 | COUTOULY Cédric | 72 |
19 | DE WEERT Kevin | 70 |
20 | HARY Maryan | 68 |
23 | WEENING Pieter | 68 |
29 | VAN HECKE Preben | 69 |
30 | MCCARTY Jonathan Patrick | 68 |
31 | COMMEYNE Davy | 70 |
32 | CAETHOVEN Steven | 67 |
36 | BUFFAZ Mickaël | 64 |
37 | BOUCHER David | 78 |
40 | ENGOULVENT Jimmy | 82 |
41 | GESLIN Anthony | 68 |
45 | BAUMANN Eric | 72 |
47 | DUMOULIN Samuel | 57 |