Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Pineau
1
65 kgLang
4
77 kgPate
6
73 kgDe Weert
7
70 kgCharpenteau
8
68 kgDumoulin
9
57 kgCoutouly
12
72 kgCommeyne
15
70 kgBaumann
17
72 kgRooijakkers
18
68 kgCaethoven
19
67 kgGeslin
20
68 kgVansummeren
22
79 kgPortal
24
70 kgMcCarty
26
68 kgWeening
28
68 kgHary
30
68 kgEngoulvent
34
82 kgBoucher
42
78 kgLe Mével
48
61 kgBuffaz
49
64 kgCalzati
58
68 kgVan Hecke
60
69 kg
1
65 kgLang
4
77 kgPate
6
73 kgDe Weert
7
70 kgCharpenteau
8
68 kgDumoulin
9
57 kgCoutouly
12
72 kgCommeyne
15
70 kgBaumann
17
72 kgRooijakkers
18
68 kgCaethoven
19
67 kgGeslin
20
68 kgVansummeren
22
79 kgPortal
24
70 kgMcCarty
26
68 kgWeening
28
68 kgHary
30
68 kgEngoulvent
34
82 kgBoucher
42
78 kgLe Mével
48
61 kgBuffaz
49
64 kgCalzati
58
68 kgVan Hecke
60
69 kg
Weight (KG) →
Result →
82
57
1
60
# | Rider | Weight (KG) |
---|---|---|
1 | PINEAU Jérôme | 65 |
4 | LANG Sebastian | 77 |
6 | PATE Danny | 73 |
7 | DE WEERT Kevin | 70 |
8 | CHARPENTEAU Yohann | 68 |
9 | DUMOULIN Samuel | 57 |
12 | COUTOULY Cédric | 72 |
15 | COMMEYNE Davy | 70 |
17 | BAUMANN Eric | 72 |
18 | ROOIJAKKERS Piet | 68 |
19 | CAETHOVEN Steven | 67 |
20 | GESLIN Anthony | 68 |
22 | VANSUMMEREN Johan | 79 |
24 | PORTAL Nicolas | 70 |
26 | MCCARTY Jonathan Patrick | 68 |
28 | WEENING Pieter | 68 |
30 | HARY Maryan | 68 |
34 | ENGOULVENT Jimmy | 82 |
42 | BOUCHER David | 78 |
48 | LE MÉVEL Christophe | 61 |
49 | BUFFAZ Mickaël | 64 |
58 | CALZATI Sylvain | 68 |
60 | VAN HECKE Preben | 69 |