Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Dumoulin
2
57 kgPineau
3
65 kgEngoulvent
6
82 kgCommeyne
7
70 kgGeslin
10
68 kgCalzati
13
68 kgRooijakkers
16
68 kgBoucher
17
78 kgPortal
20
70 kgCharpenteau
21
68 kgCaethoven
25
67 kgLe Mével
29
61 kgHary
32
68 kgVansummeren
35
79 kgDe Weert
37
70 kgCoutouly
38
72 kgLang
41
77 kgBaumann
42
72 kgVan Hecke
43
69 kgMcCarty
44
68 kgBuffaz
56
64 kgWeening
64
68 kg
2
57 kgPineau
3
65 kgEngoulvent
6
82 kgCommeyne
7
70 kgGeslin
10
68 kgCalzati
13
68 kgRooijakkers
16
68 kgBoucher
17
78 kgPortal
20
70 kgCharpenteau
21
68 kgCaethoven
25
67 kgLe Mével
29
61 kgHary
32
68 kgVansummeren
35
79 kgDe Weert
37
70 kgCoutouly
38
72 kgLang
41
77 kgBaumann
42
72 kgVan Hecke
43
69 kgMcCarty
44
68 kgBuffaz
56
64 kgWeening
64
68 kg
Weight (KG) →
Result →
82
57
2
64
# | Rider | Weight (KG) |
---|---|---|
2 | DUMOULIN Samuel | 57 |
3 | PINEAU Jérôme | 65 |
6 | ENGOULVENT Jimmy | 82 |
7 | COMMEYNE Davy | 70 |
10 | GESLIN Anthony | 68 |
13 | CALZATI Sylvain | 68 |
16 | ROOIJAKKERS Piet | 68 |
17 | BOUCHER David | 78 |
20 | PORTAL Nicolas | 70 |
21 | CHARPENTEAU Yohann | 68 |
25 | CAETHOVEN Steven | 67 |
29 | LE MÉVEL Christophe | 61 |
32 | HARY Maryan | 68 |
35 | VANSUMMEREN Johan | 79 |
37 | DE WEERT Kevin | 70 |
38 | COUTOULY Cédric | 72 |
41 | LANG Sebastian | 77 |
42 | BAUMANN Eric | 72 |
43 | VAN HECKE Preben | 69 |
44 | MCCARTY Jonathan Patrick | 68 |
56 | BUFFAZ Mickaël | 64 |
64 | WEENING Pieter | 68 |