Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Vansummeren
1
79 kgLe Mével
3
61 kgPortal
4
70 kgPineau
8
65 kgCalzati
11
68 kgCharpenteau
12
68 kgLang
18
77 kgCoutouly
20
72 kgCommeyne
21
70 kgBuffaz
22
64 kgGeslin
24
68 kgHary
25
68 kgEngoulvent
26
82 kgBoucher
29
78 kgCaethoven
31
67 kgDe Weert
33
70 kgWeening
36
68 kgDumoulin
44
57 kgVan Hecke
46
69 kgMcCarty
47
68 kgBaumann
49
72 kg
1
79 kgLe Mével
3
61 kgPortal
4
70 kgPineau
8
65 kgCalzati
11
68 kgCharpenteau
12
68 kgLang
18
77 kgCoutouly
20
72 kgCommeyne
21
70 kgBuffaz
22
64 kgGeslin
24
68 kgHary
25
68 kgEngoulvent
26
82 kgBoucher
29
78 kgCaethoven
31
67 kgDe Weert
33
70 kgWeening
36
68 kgDumoulin
44
57 kgVan Hecke
46
69 kgMcCarty
47
68 kgBaumann
49
72 kg
Weight (KG) →
Result →
82
57
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | VANSUMMEREN Johan | 79 |
3 | LE MÉVEL Christophe | 61 |
4 | PORTAL Nicolas | 70 |
8 | PINEAU Jérôme | 65 |
11 | CALZATI Sylvain | 68 |
12 | CHARPENTEAU Yohann | 68 |
18 | LANG Sebastian | 77 |
20 | COUTOULY Cédric | 72 |
21 | COMMEYNE Davy | 70 |
22 | BUFFAZ Mickaël | 64 |
24 | GESLIN Anthony | 68 |
25 | HARY Maryan | 68 |
26 | ENGOULVENT Jimmy | 82 |
29 | BOUCHER David | 78 |
31 | CAETHOVEN Steven | 67 |
33 | DE WEERT Kevin | 70 |
36 | WEENING Pieter | 68 |
44 | DUMOULIN Samuel | 57 |
46 | VAN HECKE Preben | 69 |
47 | MCCARTY Jonathan Patrick | 68 |
49 | BAUMANN Eric | 72 |