Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Bonnaire
6
67 kgSanchez
7
75 kgClaude
9
69 kgSprick
10
71 kgLequatre
12
64 kgMol
14
83 kgBeppu
15
69 kgBelgy
19
68 kgNaibo
20
62 kgFothen
21
71 kgPauriol
24
68 kgMcCarty
26
68 kgPerget
27
64 kgFrischkorn
28
68 kgBurghardt
32
75 kgPasseron
37
73 kgGoesinnen
41
75 kgFeillu
42
62 kgSchillinger
46
72 kgMarino
50
65 kgDeignan
51
65 kgGène
52
67 kgFarrar
70
73 kg
6
67 kgSanchez
7
75 kgClaude
9
69 kgSprick
10
71 kgLequatre
12
64 kgMol
14
83 kgBeppu
15
69 kgBelgy
19
68 kgNaibo
20
62 kgFothen
21
71 kgPauriol
24
68 kgMcCarty
26
68 kgPerget
27
64 kgFrischkorn
28
68 kgBurghardt
32
75 kgPasseron
37
73 kgGoesinnen
41
75 kgFeillu
42
62 kgSchillinger
46
72 kgMarino
50
65 kgDeignan
51
65 kgGène
52
67 kgFarrar
70
73 kg
Weight (KG) →
Result →
83
62
6
70
# | Rider | Weight (KG) |
---|---|---|
6 | BONNAIRE Olivier | 67 |
7 | SANCHEZ Fabien | 75 |
9 | CLAUDE Mathieu | 69 |
10 | SPRICK Matthieu | 71 |
12 | LEQUATRE Geoffroy | 64 |
14 | MOL Wouter | 83 |
15 | BEPPU Fumiyuki | 69 |
19 | BELGY Julien | 68 |
20 | NAIBO Carl | 62 |
21 | FOTHEN Markus | 71 |
24 | PAURIOL Rémi | 68 |
26 | MCCARTY Jonathan Patrick | 68 |
27 | PERGET Mathieu | 64 |
28 | FRISCHKORN William | 68 |
32 | BURGHARDT Marcus | 75 |
37 | PASSERON Aurélien | 73 |
41 | GOESINNEN Floris | 75 |
42 | FEILLU Romain | 62 |
46 | SCHILLINGER Andreas | 72 |
50 | MARINO Jean-Marc | 65 |
51 | DEIGNAN Philip | 65 |
52 | GÈNE Yohann | 67 |
70 | FARRAR Tyler | 73 |