Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Meersman
1
63 kgStamsnijder
2
76 kgPoulhiès
6
75 kgBlot
9
71 kgLoubet
11
66 kgCieślik
12
65 kgCherel
13
65 kgMasson
14
68 kgSonnery
17
60 kgRolland
19
70 kgMartin
26
59 kgSeeldraeyers
27
60 kgPeyroton-Dartet
33
65 kgKadri
36
66 kgBarle
39
72 kgSchultz
42
70 kgBoom
45
75 kg
1
63 kgStamsnijder
2
76 kgPoulhiès
6
75 kgBlot
9
71 kgLoubet
11
66 kgCieślik
12
65 kgCherel
13
65 kgMasson
14
68 kgSonnery
17
60 kgRolland
19
70 kgMartin
26
59 kgSeeldraeyers
27
60 kgPeyroton-Dartet
33
65 kgKadri
36
66 kgBarle
39
72 kgSchultz
42
70 kgBoom
45
75 kg
Weight (KG) →
Result →
76
59
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | MEERSMAN Gianni | 63 |
2 | STAMSNIJDER Tom | 76 |
6 | POULHIÈS Stéphane | 75 |
9 | BLOT Guillaume | 71 |
11 | LOUBET Julien | 66 |
12 | CIEŚLIK Paweł | 65 |
13 | CHEREL Mikaël | 65 |
14 | MASSON Christophe | 68 |
17 | SONNERY Blaise | 60 |
19 | ROLLAND Pierre | 70 |
26 | MARTIN Dan | 59 |
27 | SEELDRAEYERS Kevin | 60 |
33 | PEYROTON-DARTET Thomas | 65 |
36 | KADRI Blel | 66 |
39 | BARLE Florent | 72 |
42 | SCHULTZ Sam | 70 |
45 | BOOM Lars | 75 |