Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Meersman
1
63 kgSeeldraeyers
2
60 kgGonzalo
3
66 kgStamsnijder
4
76 kgPoulhiès
5
75 kgSonnery
6
60 kgHupond
8
65 kgMarino
10
65 kgLadagnous
13
73 kgLoubet
17
66 kgFarrar
18
73 kgCazaux
21
59 kgSulzberger
25
67 kgRolland
26
70 kgPerget
27
64 kgBlot
30
71 kgRousseau
31
70 kg
1
63 kgSeeldraeyers
2
60 kgGonzalo
3
66 kgStamsnijder
4
76 kgPoulhiès
5
75 kgSonnery
6
60 kgHupond
8
65 kgMarino
10
65 kgLadagnous
13
73 kgLoubet
17
66 kgFarrar
18
73 kgCazaux
21
59 kgSulzberger
25
67 kgRolland
26
70 kgPerget
27
64 kgBlot
30
71 kgRousseau
31
70 kg
Weight (KG) →
Result →
76
59
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | MEERSMAN Gianni | 63 |
2 | SEELDRAEYERS Kevin | 60 |
3 | GONZALO Eduardo | 66 |
4 | STAMSNIJDER Tom | 76 |
5 | POULHIÈS Stéphane | 75 |
6 | SONNERY Blaise | 60 |
8 | HUPOND Thierry | 65 |
10 | MARINO Jean-Marc | 65 |
13 | LADAGNOUS Matthieu | 73 |
17 | LOUBET Julien | 66 |
18 | FARRAR Tyler | 73 |
21 | CAZAUX Pierre | 59 |
25 | SULZBERGER Bernard | 67 |
26 | ROLLAND Pierre | 70 |
27 | PERGET Mathieu | 64 |
30 | BLOT Guillaume | 71 |
31 | ROUSSEAU Nicolas | 70 |