Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Greef
1
77 kgMartin
3
59 kgKonovalovas
5
74 kgGeschke
7
64 kgBonnafond
9
68 kgBagot
10
65 kgRoels
13
75 kgSmukulis
14
72 kgPliușchin
15
66 kgvan Garderen
17
72 kgSenac
19
63 kgEl Fares
20
62 kgRoux
21
73 kgPantano
22
61 kgKadri
24
66 kgVanspeybrouck
26
76 kgBérard
27
70 kgKvist
29
68 kgDockx
32
64 kgBakelants
35
67 kg
1
77 kgMartin
3
59 kgKonovalovas
5
74 kgGeschke
7
64 kgBonnafond
9
68 kgBagot
10
65 kgRoels
13
75 kgSmukulis
14
72 kgPliușchin
15
66 kgvan Garderen
17
72 kgSenac
19
63 kgEl Fares
20
62 kgRoux
21
73 kgPantano
22
61 kgKadri
24
66 kgVanspeybrouck
26
76 kgBérard
27
70 kgKvist
29
68 kgDockx
32
64 kgBakelants
35
67 kg
Weight (KG) →
Result →
77
59
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | DE GREEF Francis | 77 |
3 | MARTIN Dan | 59 |
5 | KONOVALOVAS Ignatas | 74 |
7 | GESCHKE Simon | 64 |
9 | BONNAFOND Guillaume | 68 |
10 | BAGOT Yoann | 65 |
13 | ROELS Dominik | 75 |
14 | SMUKULIS Gatis | 72 |
15 | PLIUȘCHIN Alexandr | 66 |
17 | VAN GARDEREN Tejay | 72 |
19 | SENAC Jean-Charles | 63 |
20 | EL FARES Julien | 62 |
21 | ROUX Anthony | 73 |
22 | PANTANO Jarlinson | 61 |
24 | KADRI Blel | 66 |
26 | VANSPEYBROUCK Pieter | 76 |
27 | BÉRARD Julien | 70 |
29 | KVIST Thomas Vedel | 68 |
32 | DOCKX Gert | 64 |
35 | BAKELANTS Jan | 67 |