Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bonnafond
1
68 kgKadri
2
66 kgEijssen
5
60 kgSmukulis
6
72 kgMeyer
7
68 kgBagot
9
65 kgGeniez
11
68 kgPantano
12
61 kgSicard
13
63 kgVoß
14
66 kgVanendert
15
64 kgDockx
16
64 kgGeschke
17
64 kgClaeys
20
77 kgO'Shea
23
76 kgBobridge
25
65 kgSuarez
37
67 kgBérard
39
70 kgMolard
40
62 kgBeyer
42
63 kgDelaplace
56
65 kg
1
68 kgKadri
2
66 kgEijssen
5
60 kgSmukulis
6
72 kgMeyer
7
68 kgBagot
9
65 kgGeniez
11
68 kgPantano
12
61 kgSicard
13
63 kgVoß
14
66 kgVanendert
15
64 kgDockx
16
64 kgGeschke
17
64 kgClaeys
20
77 kgO'Shea
23
76 kgBobridge
25
65 kgSuarez
37
67 kgBérard
39
70 kgMolard
40
62 kgBeyer
42
63 kgDelaplace
56
65 kg
Weight (KG) →
Result →
77
60
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | BONNAFOND Guillaume | 68 |
2 | KADRI Blel | 66 |
5 | EIJSSEN Yannick | 60 |
6 | SMUKULIS Gatis | 72 |
7 | MEYER Travis | 68 |
9 | BAGOT Yoann | 65 |
11 | GENIEZ Alexandre | 68 |
12 | PANTANO Jarlinson | 61 |
13 | SICARD Romain | 63 |
14 | VOß Paul | 66 |
15 | VANENDERT Dennis | 64 |
16 | DOCKX Gert | 64 |
17 | GESCHKE Simon | 64 |
20 | CLAEYS Dimitri | 77 |
23 | O'SHEA Glenn | 76 |
25 | BOBRIDGE Jack | 65 |
37 | SUAREZ Camilo Andres | 67 |
39 | BÉRARD Julien | 70 |
40 | MOLARD Rudy | 62 |
42 | BEYER Chad | 63 |
56 | DELAPLACE Anthony | 65 |