Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Vandyck
1
64 kgLecuisinier
2
65 kgChernetski
3
63 kgTeuns
4
64 kgWarbasse
5
67 kgDomont
7
65 kgMartin
9
55 kgGuerin
10
64 kgDumourier
14
60 kgPacher
16
62 kgGuillemois
17
66 kgPaillot
18
72 kgRybalkin
19
60 kgChevrier
20
56 kgFraile
21
72 kgPerez
22
70 kgBarbero
27
66 kgSamolenkov
28
71 kg
1
64 kgLecuisinier
2
65 kgChernetski
3
63 kgTeuns
4
64 kgWarbasse
5
67 kgDomont
7
65 kgMartin
9
55 kgGuerin
10
64 kgDumourier
14
60 kgPacher
16
62 kgGuillemois
17
66 kgPaillot
18
72 kgRybalkin
19
60 kgChevrier
20
56 kgFraile
21
72 kgPerez
22
70 kgBarbero
27
66 kgSamolenkov
28
71 kg
Weight (KG) →
Result →
72
55
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VANDYCK Niels | 64 |
2 | LECUISINIER Pierre-Henri | 65 |
3 | CHERNETSKI Sergei | 63 |
4 | TEUNS Dylan | 64 |
5 | WARBASSE Larry | 67 |
7 | DOMONT Axel | 65 |
9 | MARTIN Guillaume | 55 |
10 | GUERIN Alexis | 64 |
14 | DUMOURIER Florian | 60 |
16 | PACHER Quentin | 62 |
17 | GUILLEMOIS Romain | 66 |
18 | PAILLOT Yoann | 72 |
19 | RYBALKIN Aleksey | 60 |
20 | CHEVRIER Clément | 56 |
21 | FRAILE Omar | 72 |
22 | PEREZ Anthony | 70 |
27 | BARBERO Carlos | 66 |
28 | SAMOLENKOV Artem | 71 |