Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
De Vos
1
72 kgGuillemois
2
66 kgDumourier
6
60 kgTeuns
10
64 kgChevrier
11
56 kgLatour
13
66 kgIturria
16
69 kgParra
18
51 kgTheuns
19
72 kgGuerin
20
64 kgStöhr
22
72 kgCalmejane
23
70 kgBidard
28
65 kgArmirail
32
72 kgStöhr
33
66 kgGrellier
36
65 kgOchoa
38
61 kgBaillifard
39
54 kgMaldonado
48
57 kgAristi
51
72 kgBarbero
52
66 kgHandgraaf
59
66 kg
1
72 kgGuillemois
2
66 kgDumourier
6
60 kgTeuns
10
64 kgChevrier
11
56 kgLatour
13
66 kgIturria
16
69 kgParra
18
51 kgTheuns
19
72 kgGuerin
20
64 kgStöhr
22
72 kgCalmejane
23
70 kgBidard
28
65 kgArmirail
32
72 kgStöhr
33
66 kgGrellier
36
65 kgOchoa
38
61 kgBaillifard
39
54 kgMaldonado
48
57 kgAristi
51
72 kgBarbero
52
66 kgHandgraaf
59
66 kg
Weight (KG) →
Result →
72
51
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | DE VOS Gertjan | 72 |
2 | GUILLEMOIS Romain | 66 |
6 | DUMOURIER Florian | 60 |
10 | TEUNS Dylan | 64 |
11 | CHEVRIER Clément | 56 |
13 | LATOUR Pierre | 66 |
16 | ITURRIA Mikel | 69 |
18 | PARRA Heiner Rodrigo | 51 |
19 | THEUNS Edward | 72 |
20 | GUERIN Alexis | 64 |
22 | STÖHR Ján | 72 |
23 | CALMEJANE Lilian | 70 |
28 | BIDARD François | 65 |
32 | ARMIRAIL Bruno | 72 |
33 | STÖHR Pavel | 66 |
36 | GRELLIER Fabien | 65 |
38 | OCHOA Diego Antonio | 61 |
39 | BAILLIFARD Valentin | 54 |
48 | MALDONADO Anthony | 57 |
51 | ARISTI Mikel | 72 |
52 | BARBERO Carlos | 66 |
59 | HANDGRAAF Sjors | 66 |