Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 23
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Foliforov
1
61 kgBenoot
2
72 kgVervaeke
3
68 kgChetout
4
70 kgRosón
6
62 kgLatour
8
66 kgCalmejane
9
70 kgOchoa
13
61 kgPacher
14
62 kgDumourier
15
60 kgSuaza
16
66 kgArslanov
18
63 kgThevenot
20
69 kgVinjebo
22
67 kgBidard
25
65 kgOien
30
68 kgGoolaerts
32
80 kgSchultz
33
68 kgEversdijk
34
67.5 kgOsorio
35
65 kg
1
61 kgBenoot
2
72 kgVervaeke
3
68 kgChetout
4
70 kgRosón
6
62 kgLatour
8
66 kgCalmejane
9
70 kgOchoa
13
61 kgPacher
14
62 kgDumourier
15
60 kgSuaza
16
66 kgArslanov
18
63 kgThevenot
20
69 kgVinjebo
22
67 kgBidard
25
65 kgOien
30
68 kgGoolaerts
32
80 kgSchultz
33
68 kgEversdijk
34
67.5 kgOsorio
35
65 kg
Weight (KG) →
Result →
80
60
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | FOLIFOROV Alexander | 61 |
2 | BENOOT Tiesj | 72 |
3 | VERVAEKE Louis | 68 |
4 | CHETOUT Loïc | 70 |
6 | ROSÓN Jaime | 62 |
8 | LATOUR Pierre | 66 |
9 | CALMEJANE Lilian | 70 |
13 | OCHOA Diego Antonio | 61 |
14 | PACHER Quentin | 62 |
15 | DUMOURIER Florian | 60 |
16 | SUAZA Bernardo | 66 |
18 | ARSLANOV Ildar | 63 |
20 | THEVENOT Guillaume | 69 |
22 | VINJEBO Emil Mielke | 67 |
25 | BIDARD François | 65 |
30 | OIEN Justin | 68 |
32 | GOOLAERTS Michael | 80 |
33 | SCHULTZ Nick | 68 |
34 | EVERSDIJK Matthijs | 67.5 |
35 | OSORIO Juan Felipe | 65 |