Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Benoot
1
72 kgArslanov
4
63 kgOsorio
5
65 kgVinjebo
6
67 kgSchultz
7
68 kgLe Turnier
11
65 kgVan Gompel
12
70 kgSellier
14
68 kgLisson
16
73 kgOien
20
68 kgGoubert
22
61 kgOwen
23
67 kgGoolaerts
24
80 kgAguirre
26
55 kgGarcía Cortina
30
77 kgIrisarri
31
66 kgConstantin
34
66 kg
1
72 kgArslanov
4
63 kgOsorio
5
65 kgVinjebo
6
67 kgSchultz
7
68 kgLe Turnier
11
65 kgVan Gompel
12
70 kgSellier
14
68 kgLisson
16
73 kgOien
20
68 kgGoubert
22
61 kgOwen
23
67 kgGoolaerts
24
80 kgAguirre
26
55 kgGarcía Cortina
30
77 kgIrisarri
31
66 kgConstantin
34
66 kg
Weight (KG) →
Result →
80
55
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | BENOOT Tiesj | 72 |
4 | ARSLANOV Ildar | 63 |
5 | OSORIO Juan Felipe | 65 |
6 | VINJEBO Emil Mielke | 67 |
7 | SCHULTZ Nick | 68 |
11 | LE TURNIER Mathias | 65 |
12 | VAN GOMPEL Mathias | 70 |
14 | SELLIER Simon | 68 |
16 | LISSON Christoffer | 73 |
20 | OIEN Justin | 68 |
22 | GOUBERT Jean | 61 |
23 | OWEN Logan | 67 |
24 | GOOLAERTS Michael | 80 |
26 | AGUIRRE Hernán Ricardo | 55 |
30 | GARCÍA CORTINA Iván | 77 |
31 | IRISARRI Jon | 66 |
34 | CONSTANTIN Baptiste | 66 |