Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Vervaeke
1
68 kgChetout
2
70 kgBenoot
3
72 kgCalmejane
4
70 kgFoliforov
5
61 kgOchoa
7
61 kgPacher
8
62 kgDumourier
9
60 kgRosón
10
62 kgSuaza
11
66 kgThevenot
14
69 kgArslanov
17
63 kgVinjebo
19
67 kgLatour
22
66 kgBidard
24
65 kgOien
30
68 kgGoolaerts
33
80 kgConstantin
34
66 kgSchultz
35
68 kgEversdijk
36
67.5 kgOsorio
37
65 kg
1
68 kgChetout
2
70 kgBenoot
3
72 kgCalmejane
4
70 kgFoliforov
5
61 kgOchoa
7
61 kgPacher
8
62 kgDumourier
9
60 kgRosón
10
62 kgSuaza
11
66 kgThevenot
14
69 kgArslanov
17
63 kgVinjebo
19
67 kgLatour
22
66 kgBidard
24
65 kgOien
30
68 kgGoolaerts
33
80 kgConstantin
34
66 kgSchultz
35
68 kgEversdijk
36
67.5 kgOsorio
37
65 kg
Weight (KG) →
Result →
80
60
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VERVAEKE Louis | 68 |
2 | CHETOUT Loïc | 70 |
3 | BENOOT Tiesj | 72 |
4 | CALMEJANE Lilian | 70 |
5 | FOLIFOROV Alexander | 61 |
7 | OCHOA Diego Antonio | 61 |
8 | PACHER Quentin | 62 |
9 | DUMOURIER Florian | 60 |
10 | ROSÓN Jaime | 62 |
11 | SUAZA Bernardo | 66 |
14 | THEVENOT Guillaume | 69 |
17 | ARSLANOV Ildar | 63 |
19 | VINJEBO Emil Mielke | 67 |
22 | LATOUR Pierre | 66 |
24 | BIDARD François | 65 |
30 | OIEN Justin | 68 |
33 | GOOLAERTS Michael | 80 |
34 | CONSTANTIN Baptiste | 66 |
35 | SCHULTZ Nick | 68 |
36 | EVERSDIJK Matthijs | 67.5 |
37 | OSORIO Juan Felipe | 65 |