Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Plus
2
67 kgPetilli
4
65 kgVincent
5
62 kgVan Gestel
7
74 kgMartin
8
55 kgMaison
9
61 kgRota
11
62 kgLe Turnier
12
65 kgGaudu
13
53 kgParet-Peintre
14
64 kgGoubert
15
61 kgOurselin
16
70 kgDoubey
19
62 kgLeplingard
20
68 kgVermeulen
22
66 kgOvett
23
64 kgRochas
24
51 kg
2
67 kgPetilli
4
65 kgVincent
5
62 kgVan Gestel
7
74 kgMartin
8
55 kgMaison
9
61 kgRota
11
62 kgLe Turnier
12
65 kgGaudu
13
53 kgParet-Peintre
14
64 kgGoubert
15
61 kgOurselin
16
70 kgDoubey
19
62 kgLeplingard
20
68 kgVermeulen
22
66 kgOvett
23
64 kgRochas
24
51 kg
Weight (KG) →
Result →
74
51
2
24
# | Rider | Weight (KG) |
---|---|---|
2 | DE PLUS Laurens | 67 |
4 | PETILLI Simone | 65 |
5 | VINCENT Léo | 62 |
7 | VAN GESTEL Dries | 74 |
8 | MARTIN Guillaume | 55 |
9 | MAISON Jérémy | 61 |
11 | ROTA Lorenzo | 62 |
12 | LE TURNIER Mathias | 65 |
13 | GAUDU David | 53 |
14 | PARET-PEINTRE Aurélien | 64 |
15 | GOUBERT Jean | 61 |
16 | OURSELIN Paul | 70 |
19 | DOUBEY Fabien | 62 |
20 | LEPLINGARD Antoine | 68 |
22 | VERMEULEN Alexey | 66 |
23 | OVETT Freddy | 64 |
24 | ROCHAS Rémy | 51 |