Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Lambrecht
1
56 kgLe Turnier
2
65 kgVincent
3
62 kgReyes
4
55 kgKnox
5
58 kgCras
6
65 kgPearson
7
53 kgDavies
8
66 kgSchultz
9
68 kgCarboni
10
61 kgCullaigh
11
78 kgVanhoucke
12
65 kgGaillard
13
64 kgCherkasov
15
68 kgParet-Peintre
17
64 kgHiguita
18
57 kgPlanckaert
20
69 kg
1
56 kgLe Turnier
2
65 kgVincent
3
62 kgReyes
4
55 kgKnox
5
58 kgCras
6
65 kgPearson
7
53 kgDavies
8
66 kgSchultz
9
68 kgCarboni
10
61 kgCullaigh
11
78 kgVanhoucke
12
65 kgGaillard
13
64 kgCherkasov
15
68 kgParet-Peintre
17
64 kgHiguita
18
57 kgPlanckaert
20
69 kg
Weight (KG) →
Result →
78
53
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | LAMBRECHT Bjorg | 56 |
2 | LE TURNIER Mathias | 65 |
3 | VINCENT Léo | 62 |
4 | REYES Aldemar | 55 |
5 | KNOX James | 58 |
6 | CRAS Steff | 65 |
7 | PEARSON Daniel | 53 |
8 | DAVIES Scott | 66 |
9 | SCHULTZ Nick | 68 |
10 | CARBONI Giovanni | 61 |
11 | CULLAIGH Gabriel | 78 |
12 | VANHOUCKE Harm | 65 |
13 | GAILLARD Marlon | 64 |
15 | CHERKASOV Nikolay | 68 |
17 | PARET-PEINTRE Aurélien | 64 |
18 | HIGUITA Sergio | 57 |
20 | PLANCKAERT Emiel | 69 |