Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Almeida
1
63 kgLeknessund
2
72 kgChampoussin
3
61 kgRodes
4
65 kgAnderson
5
70 kgChampion
6
66 kgSchunk
7
65 kgVan Poucke
8
68 kgGarcía González
9
62 kgCarr
10
66 kgSchelling
11
66 kgHecht
14
72 kgMazzucco
15
69 kgZana
16
65 kgDebons
17
65 kgBrunel
20
70 kgRopero
21
61 kgChevalier
24
60 kgBonnefoix
26
60 kgLouvel
27
77 kgMontauban
34
68 kgFerron
37
67 kg
1
63 kgLeknessund
2
72 kgChampoussin
3
61 kgRodes
4
65 kgAnderson
5
70 kgChampion
6
66 kgSchunk
7
65 kgVan Poucke
8
68 kgGarcía González
9
62 kgCarr
10
66 kgSchelling
11
66 kgHecht
14
72 kgMazzucco
15
69 kgZana
16
65 kgDebons
17
65 kgBrunel
20
70 kgRopero
21
61 kgChevalier
24
60 kgBonnefoix
26
60 kgLouvel
27
77 kgMontauban
34
68 kgFerron
37
67 kg
Weight (KG) →
Result →
77
60
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | ALMEIDA João | 63 |
2 | LEKNESSUND Andreas | 72 |
3 | CHAMPOUSSIN Clément | 61 |
4 | RODES Eduard | 65 |
5 | ANDERSON Edward | 70 |
6 | CHAMPION Thomas | 66 |
7 | SCHUNK Conor | 65 |
8 | VAN POUCKE Aaron | 68 |
9 | GARCÍA GONZÁLEZ Sergio | 62 |
10 | CARR Simon | 66 |
11 | SCHELLING Ide | 66 |
14 | HECHT Gage | 72 |
15 | MAZZUCCO Fabio | 69 |
16 | ZANA Filippo | 65 |
17 | DEBONS Antoine | 65 |
20 | BRUNEL Alexys | 70 |
21 | ROPERO Alejandro | 61 |
24 | CHEVALIER Maxime | 60 |
26 | BONNEFOIX Edouard | 60 |
27 | LOUVEL Matis | 77 |
34 | MONTAUBAN Jeremy | 68 |
37 | FERRON Valentin | 67 |