Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Bagioli
1
60 kgLeknessund
2
72 kgJorgenson
3
69 kgNonnez
4
63 kgVan Wilder
5
64 kgVan Gils
6
63 kgArensman
7
69.5 kgGarcía Pierna
10
58 kgMulubrhan
12
60 kgChampion
13
66 kgLouvel
14
77 kgGarcía González
15
62 kgPetrucci
17
56 kgGirmay
18
70 kgCharrin
19
67 kgCapron
22
59 kgSegovia
25
70 kgBenech
28
65 kgMainguenaud
29
63 kgSedlacek
33
65 kgKelemen
36
70 kg
1
60 kgLeknessund
2
72 kgJorgenson
3
69 kgNonnez
4
63 kgVan Wilder
5
64 kgVan Gils
6
63 kgArensman
7
69.5 kgGarcía Pierna
10
58 kgMulubrhan
12
60 kgChampion
13
66 kgLouvel
14
77 kgGarcía González
15
62 kgPetrucci
17
56 kgGirmay
18
70 kgCharrin
19
67 kgCapron
22
59 kgSegovia
25
70 kgBenech
28
65 kgMainguenaud
29
63 kgSedlacek
33
65 kgKelemen
36
70 kg
Weight (KG) →
Result →
77
56
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | BAGIOLI Andrea | 60 |
2 | LEKNESSUND Andreas | 72 |
3 | JORGENSON Matteo | 69 |
4 | NONNEZ Théo | 63 |
5 | VAN WILDER Ilan | 64 |
6 | VAN GILS Maxim | 63 |
7 | ARENSMAN Thymen | 69.5 |
10 | GARCÍA PIERNA Carlos | 58 |
12 | MULUBRHAN Henok | 60 |
13 | CHAMPION Thomas | 66 |
14 | LOUVEL Matis | 77 |
15 | GARCÍA GONZÁLEZ Sergio | 62 |
17 | PETRUCCI Mattia | 56 |
18 | GIRMAY Biniam | 70 |
19 | CHARRIN Aloïs | 67 |
22 | CAPRON Rémi | 59 |
25 | SEGOVIA Yago | 70 |
28 | BENECH Pierre | 65 |
29 | MAINGUENAUD Tom | 63 |
33 | SEDLACEK Vojtěch | 65 |
36 | KELEMEN Petr | 70 |