Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Krul
2
75 kgPage
3
71 kgHealy
5
65 kgChampion
6
66 kgVan Gils
7
63 kgVervloesem
9
65 kgMoniquet
10
61 kgRyan
12
56 kgBallerstedt
13
76 kgGloag
14
60 kgAskey
15
75 kgHayter
16
66 kgFroidevaux
17
71 kgHeinschke
18
70 kgVoisard
20
56 kgLeemreize
22
66 kgFrigo
23
70 kgBalmer
24
70 kgRichard
25
55 kgHessmann
26
78 kgBoileau
27
57 kgDebesay
29
63 kgBoven
32
62 kg
2
75 kgPage
3
71 kgHealy
5
65 kgChampion
6
66 kgVan Gils
7
63 kgVervloesem
9
65 kgMoniquet
10
61 kgRyan
12
56 kgBallerstedt
13
76 kgGloag
14
60 kgAskey
15
75 kgHayter
16
66 kgFroidevaux
17
71 kgHeinschke
18
70 kgVoisard
20
56 kgLeemreize
22
66 kgFrigo
23
70 kgBalmer
24
70 kgRichard
25
55 kgHessmann
26
78 kgBoileau
27
57 kgDebesay
29
63 kgBoven
32
62 kg
Weight (KG) →
Result →
78
55
2
32
# | Rider | Weight (KG) |
---|---|---|
2 | KRUL Wessel | 75 |
3 | PAGE Hugo | 71 |
5 | HEALY Ben | 65 |
6 | CHAMPION Thomas | 66 |
7 | VAN GILS Maxim | 63 |
9 | VERVLOESEM Xandres | 65 |
10 | MONIQUET Sylvain | 61 |
12 | RYAN Archie | 56 |
13 | BALLERSTEDT Maurice | 76 |
14 | GLOAG Thomas | 60 |
15 | ASKEY Lewis | 75 |
16 | HAYTER Leo | 66 |
17 | FROIDEVAUX Robin | 71 |
18 | HEINSCHKE Leon | 70 |
20 | VOISARD Yannis | 56 |
22 | LEEMREIZE Gijs | 66 |
23 | FRIGO Marco | 70 |
24 | BALMER Alexandre | 70 |
25 | RICHARD Maxime | 55 |
26 | HESSMANN Michel | 78 |
27 | BOILEAU Alan | 57 |
29 | DEBESAY Yakob | 63 |
32 | BOVEN Lars | 62 |