Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Askey
2
75 kgFrigo
3
70 kgVan der Beken
4
66 kgPaleni
5
65 kgFlynn
8
67 kgPaulus
9
62 kgLeclainche
10
65 kgClaeys
11
68.5 kgStrong
12
63 kgMaris
13
64 kgSerrano
14
60 kgRichard
16
55 kgBaudin
17
64 kgWatson
18
68 kgParet-Peintre
19
52 kgCharrin
20
67 kgVermoote
21
73 kgVandepitte
22
80 kgNavarro
23
60 kgBalmer
24
70 kgJohannessen
25
62 kg
2
75 kgFrigo
3
70 kgVan der Beken
4
66 kgPaleni
5
65 kgFlynn
8
67 kgPaulus
9
62 kgLeclainche
10
65 kgClaeys
11
68.5 kgStrong
12
63 kgMaris
13
64 kgSerrano
14
60 kgRichard
16
55 kgBaudin
17
64 kgWatson
18
68 kgParet-Peintre
19
52 kgCharrin
20
67 kgVermoote
21
73 kgVandepitte
22
80 kgNavarro
23
60 kgBalmer
24
70 kgJohannessen
25
62 kg
Weight (KG) →
Result →
80
52
2
25
# | Rider | Weight (KG) |
---|---|---|
2 | ASKEY Lewis | 75 |
3 | FRIGO Marco | 70 |
4 | VAN DER BEKEN Aaron | 66 |
5 | PALENI Enzo | 65 |
8 | FLYNN Sean | 67 |
9 | PAULUS Milan | 62 |
10 | LECLAINCHE Gwen | 65 |
11 | CLAEYS Robbe | 68.5 |
12 | STRONG Corbin | 63 |
13 | MARIS Elias | 64 |
14 | SERRANO Javier | 60 |
16 | RICHARD Maxime | 55 |
17 | BAUDIN Alex | 64 |
18 | WATSON Samuel | 68 |
19 | PARET-PEINTRE Valentin | 52 |
20 | CHARRIN Aloïs | 67 |
21 | VERMOOTE Jelle | 73 |
22 | VANDEPITTE Nathan | 80 |
23 | NAVARRO Gauthier | 60 |
24 | BALMER Alexandre | 70 |
25 | JOHANNESSEN Tobias Halland | 62 |