Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Tercero
1
65 kgGloag
2
60 kgStaune-Mittet
3
67 kgThompson
4
66 kgWillems
6
64 kgAskey
8
75 kgParet-Peintre
9
52 kgRouland
10
55 kgvan Bekkum
11
62 kgWatson
16
68 kgBaudin
17
66 kgVan Ryckeghem
18
80 kgBoven
21
62 kgVerschuren
25
54 kgGutiérrez
27
58 kgCastrillo
28
74 kgMontoli
30
66 kgCailliau
31
61 kg
1
65 kgGloag
2
60 kgStaune-Mittet
3
67 kgThompson
4
66 kgWillems
6
64 kgAskey
8
75 kgParet-Peintre
9
52 kgRouland
10
55 kgvan Bekkum
11
62 kgWatson
16
68 kgBaudin
17
66 kgVan Ryckeghem
18
80 kgBoven
21
62 kgVerschuren
25
54 kgGutiérrez
27
58 kgCastrillo
28
74 kgMontoli
30
66 kgCailliau
31
61 kg
Weight (KG) →
Result →
80
52
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | TERCERO Fernando | 65 |
2 | GLOAG Thomas | 60 |
3 | STAUNE-MITTET Johannes | 67 |
4 | THOMPSON Reuben | 66 |
6 | WILLEMS Jago | 64 |
8 | ASKEY Lewis | 75 |
9 | PARET-PEINTRE Valentin | 52 |
10 | ROULAND Louis | 55 |
11 | VAN BEKKUM Darren | 62 |
16 | WATSON Samuel | 68 |
17 | BAUDIN Alex | 66 |
18 | VAN RYCKEGHEM Lars | 80 |
21 | BOVEN Lars | 62 |
25 | VERSCHUREN Killian | 54 |
27 | GUTIÉRREZ Jorge | 58 |
28 | CASTRILLO Pablo | 74 |
30 | MONTOLI Andrea | 66 |
31 | CAILLIAU Taïno | 61 |