Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Fernández
2
57 kgPaleni
3
65 kgBoven
4
62 kgStaune-Mittet
5
67 kgLeclainche
6
65 kgMartinez
7
52 kgTercero
8
65 kgGutiérrez
9
58 kgDebruyne
10
66 kgBalderstone
11
61 kgThompson
13
66 kgRyan
17
56 kgJaladeau
21
63 kgLarmet
22
68 kgGelders
24
66 kgDomínguez
26
61 kgGermani
28
62 kg
2
57 kgPaleni
3
65 kgBoven
4
62 kgStaune-Mittet
5
67 kgLeclainche
6
65 kgMartinez
7
52 kgTercero
8
65 kgGutiérrez
9
58 kgDebruyne
10
66 kgBalderstone
11
61 kgThompson
13
66 kgRyan
17
56 kgJaladeau
21
63 kgLarmet
22
68 kgGelders
24
66 kgDomínguez
26
61 kgGermani
28
62 kg
Weight (KG) →
Result →
68
52
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | FERNÁNDEZ Samuel | 57 |
3 | PALENI Enzo | 65 |
4 | BOVEN Lars | 62 |
5 | STAUNE-MITTET Johannes | 67 |
6 | LECLAINCHE Gwen | 65 |
7 | MARTINEZ Lenny | 52 |
8 | TERCERO Fernando | 65 |
9 | GUTIÉRREZ Jorge | 58 |
10 | DEBRUYNE Ramses | 66 |
11 | BALDERSTONE Abel | 61 |
13 | THOMPSON Reuben | 66 |
17 | RYAN Archie | 56 |
21 | JALADEAU Artus | 63 |
22 | LARMET Ilan | 68 |
24 | GELDERS Gil | 66 |
26 | DOMÍNGUEZ David | 61 |
28 | GERMANI Lorenzo | 62 |