Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Martinez
2
52 kgTercero
3
65 kgStaune-Mittet
4
67 kgPaleni
5
65 kgGutiérrez
6
58 kgRyan
7
56 kgThompson
8
66 kgBalderstone
10
61 kgFernández
11
57 kgGermani
17
62 kgLeclainche
19
65 kgDomínguez
22
61 kgPidcock
23
57 kgFernández
24
60 kgGelders
26
66 kgVan der Beken
27
66 kgVan Hautegem
29
64 kgRolland
30
59 kgWestley
33
54 kgLambrecht
35
75 kgKulset
37
58 kgGilabert
41
57 kg
2
52 kgTercero
3
65 kgStaune-Mittet
4
67 kgPaleni
5
65 kgGutiérrez
6
58 kgRyan
7
56 kgThompson
8
66 kgBalderstone
10
61 kgFernández
11
57 kgGermani
17
62 kgLeclainche
19
65 kgDomínguez
22
61 kgPidcock
23
57 kgFernández
24
60 kgGelders
26
66 kgVan der Beken
27
66 kgVan Hautegem
29
64 kgRolland
30
59 kgWestley
33
54 kgLambrecht
35
75 kgKulset
37
58 kgGilabert
41
57 kg
Weight (KG) →
Result →
75
52
2
41
# | Rider | Weight (KG) |
---|---|---|
2 | MARTINEZ Lenny | 52 |
3 | TERCERO Fernando | 65 |
4 | STAUNE-MITTET Johannes | 67 |
5 | PALENI Enzo | 65 |
6 | GUTIÉRREZ Jorge | 58 |
7 | RYAN Archie | 56 |
8 | THOMPSON Reuben | 66 |
10 | BALDERSTONE Abel | 61 |
11 | FERNÁNDEZ Samuel | 57 |
17 | GERMANI Lorenzo | 62 |
19 | LECLAINCHE Gwen | 65 |
22 | DOMÍNGUEZ David | 61 |
23 | PIDCOCK Joseph | 57 |
24 | FERNÁNDEZ Sinuhé | 60 |
26 | GELDERS Gil | 66 |
27 | VAN DER BEKEN Aaron | 66 |
29 | VAN HAUTEGEM Leander | 64 |
30 | ROLLAND Brieuc | 59 |
33 | WESTLEY Dylan | 54 |
35 | LAMBRECHT Michiel | 75 |
37 | KULSET Magnus | 58 |
41 | GILABERT Arnau | 57 |