Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
van der Meulen
1
67 kgvan Bekkum
2
62 kgWidar
5
54 kgLovidius
7
70 kgPidcock
10
57 kgTuckwell
11
66 kgGreenwood
17
63 kgSierra
18
70 kgGimeno
24
60 kgGomez
26
64.5 kgBaers
28
62 kgCarrascosa
32
58 kgZapata
33
62 kgHarrison
35
65 kgJohn
37
65 kgGajdulewicz
38
67 kgGonzález
39
61 kg
1
67 kgvan Bekkum
2
62 kgWidar
5
54 kgLovidius
7
70 kgPidcock
10
57 kgTuckwell
11
66 kgGreenwood
17
63 kgSierra
18
70 kgGimeno
24
60 kgGomez
26
64.5 kgBaers
28
62 kgCarrascosa
32
58 kgZapata
33
62 kgHarrison
35
65 kgJohn
37
65 kgGajdulewicz
38
67 kgGonzález
39
61 kg
Weight (KG) →
Result →
70
54
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER MEULEN Max | 67 |
2 | VAN BEKKUM Darren | 62 |
5 | WIDAR Jarno | 54 |
7 | LOVIDIUS Edvin | 70 |
10 | PIDCOCK Joseph | 57 |
11 | TUCKWELL Luke | 66 |
17 | GREENWOOD Matthew | 63 |
18 | SIERRA Juan David | 70 |
24 | GIMENO Nil | 60 |
26 | GOMEZ Camilo Andres | 64.5 |
28 | BAERS Arne | 62 |
32 | CARRASCOSA Pablo | 58 |
33 | ZAPATA Mauricio | 62 |
35 | HARRISON Curtis | 65 |
37 | JOHN Vincent | 65 |
38 | GAJDULEWICZ Mateusz | 67 |
39 | GONZÁLEZ Antonio | 61 |