Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
van Vooren
1
75 kgClain
2
59 kgGalland
3
62 kgReihs
5
75 kgJohansen
8
78 kgJørgensen
13
60 kgBaldo
14
73 kgDegand
17
63 kgGallopin
18
69 kgWallays
23
77 kgde Jonge
27
65 kgRetschke
29
66 kgMatheou
35
73 kgGhyselinck
36
74 kgSuray
38
67 kgVanlandschoot
44
67 kgCasper
46
69 kgSaramotins
47
75 kgCommeyne
51
70 kgWetterhall
52
70 kgLisabeth
58
75 kgZingle
65
67 kg
1
75 kgClain
2
59 kgGalland
3
62 kgReihs
5
75 kgJohansen
8
78 kgJørgensen
13
60 kgBaldo
14
73 kgDegand
17
63 kgGallopin
18
69 kgWallays
23
77 kgde Jonge
27
65 kgRetschke
29
66 kgMatheou
35
73 kgGhyselinck
36
74 kgSuray
38
67 kgVanlandschoot
44
67 kgCasper
46
69 kgSaramotins
47
75 kgCommeyne
51
70 kgWetterhall
52
70 kgLisabeth
58
75 kgZingle
65
67 kg
Weight (KG) →
Result →
78
59
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | VAN VOOREN Steven | 75 |
2 | CLAIN Médéric | 59 |
3 | GALLAND Jérémie | 62 |
5 | REIHS Michael | 75 |
8 | JOHANSEN Allan | 78 |
13 | JØRGENSEN René | 60 |
14 | BALDO Nicolas | 73 |
17 | DEGAND Thomas | 63 |
18 | GALLOPIN Tony | 69 |
23 | WALLAYS Jelle | 77 |
27 | DE JONGE Maarten | 65 |
29 | RETSCHKE Robert | 66 |
35 | MATHEOU Romain | 73 |
36 | GHYSELINCK Jan | 74 |
38 | SURAY Gil | 67 |
44 | VANLANDSCHOOT James | 67 |
46 | CASPER Jimmy | 69 |
47 | SARAMOTINS Aleksejs | 75 |
51 | COMMEYNE Davy | 70 |
52 | WETTERHALL Alexander | 70 |
58 | LISABETH Kenny | 75 |
65 | ZINGLE Romain | 67 |