Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Johansen
1
78 kgWallays
4
77 kgRetschke
11
66 kgGallopin
13
69 kgde Jonge
15
65 kgGalland
16
62 kgGhyselinck
18
74 kgJørgensen
23
60 kgWetterhall
25
70 kgReihs
31
75 kgvan Vooren
32
75 kgClain
33
59 kgSuray
35
67 kgBaldo
37
73 kgDegand
41
63 kgVanlandschoot
43
67 kgMatheou
46
73 kgZingle
49
67 kgSaramotins
51
75 kgCasper
54
69 kgCommeyne
59
70 kgLisabeth
68
75 kg
1
78 kgWallays
4
77 kgRetschke
11
66 kgGallopin
13
69 kgde Jonge
15
65 kgGalland
16
62 kgGhyselinck
18
74 kgJørgensen
23
60 kgWetterhall
25
70 kgReihs
31
75 kgvan Vooren
32
75 kgClain
33
59 kgSuray
35
67 kgBaldo
37
73 kgDegand
41
63 kgVanlandschoot
43
67 kgMatheou
46
73 kgZingle
49
67 kgSaramotins
51
75 kgCasper
54
69 kgCommeyne
59
70 kgLisabeth
68
75 kg
Weight (KG) →
Result →
78
59
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Allan | 78 |
4 | WALLAYS Jelle | 77 |
11 | RETSCHKE Robert | 66 |
13 | GALLOPIN Tony | 69 |
15 | DE JONGE Maarten | 65 |
16 | GALLAND Jérémie | 62 |
18 | GHYSELINCK Jan | 74 |
23 | JØRGENSEN René | 60 |
25 | WETTERHALL Alexander | 70 |
31 | REIHS Michael | 75 |
32 | VAN VOOREN Steven | 75 |
33 | CLAIN Médéric | 59 |
35 | SURAY Gil | 67 |
37 | BALDO Nicolas | 73 |
41 | DEGAND Thomas | 63 |
43 | VANLANDSCHOOT James | 67 |
46 | MATHEOU Romain | 73 |
49 | ZINGLE Romain | 67 |
51 | SARAMOTINS Aleksejs | 75 |
54 | CASPER Jimmy | 69 |
59 | COMMEYNE Davy | 70 |
68 | LISABETH Kenny | 75 |