Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Janssens
1
74 kgVan Hooydonck
3
78 kgHavik
5
73 kgHagen
7
65 kgvan den Berg
9
78 kgBol
10
83 kgParrinello
12
68 kgLienhard
13
73 kgTizza
15
58 kgHalilaj
16
70 kgSchultz
17
68 kgBonnamour
18
70 kgBudding
20
74 kgJules
22
64 kgRiesebeek
23
78 kgZamparella
24
67 kgDe Bondt
25
73 kgVallée
26
79 kgTietema
28
74 kgKorsæth
29
84 kg
1
74 kgVan Hooydonck
3
78 kgHavik
5
73 kgHagen
7
65 kgvan den Berg
9
78 kgBol
10
83 kgParrinello
12
68 kgLienhard
13
73 kgTizza
15
58 kgHalilaj
16
70 kgSchultz
17
68 kgBonnamour
18
70 kgBudding
20
74 kgJules
22
64 kgRiesebeek
23
78 kgZamparella
24
67 kgDe Bondt
25
73 kgVallée
26
79 kgTietema
28
74 kgKorsæth
29
84 kg
Weight (KG) →
Result →
84
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | JANSSENS Jimmy | 74 |
3 | VAN HOOYDONCK Nathan | 78 |
5 | HAVIK Piotr | 73 |
7 | HAGEN Carl Fredrik | 65 |
9 | VAN DEN BERG Julius | 78 |
10 | BOL Cees | 83 |
12 | PARRINELLO Antonino | 68 |
13 | LIENHARD Fabian | 73 |
15 | TIZZA Marco | 58 |
16 | HALILAJ Redi | 70 |
17 | SCHULTZ Nick | 68 |
18 | BONNAMOUR Franck | 70 |
20 | BUDDING Martijn | 74 |
22 | JULES Justin | 64 |
23 | RIESEBEEK Oscar | 78 |
24 | ZAMPARELLA Marco | 67 |
25 | DE BONDT Dries | 73 |
26 | VALLÉE Boris | 79 |
28 | TIETEMA Bas | 74 |
29 | KORSÆTH Truls Engen | 84 |