Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Parrinello
1
68 kgBarbier
2
79 kgVallée
3
79 kgVan Hooydonck
5
78 kgDe Bondt
6
73 kgBudding
7
74 kgBol
10
83 kgLienhard
11
73 kgSchultz
14
68 kgMaldonado
16
57 kgTietema
18
74 kgHagen
20
65 kgJules
21
64 kgTizza
22
58 kgBonnamour
23
70 kgHenn
25
64 kgHavik
26
73 kgBiermans
27
78 kgAriesen
28
70 kgvan den Berg
29
78 kgJanssens
32
74 kgAriesen
33
70 kgKrul
34
68 kgKorsæth
35
84 kg
1
68 kgBarbier
2
79 kgVallée
3
79 kgVan Hooydonck
5
78 kgDe Bondt
6
73 kgBudding
7
74 kgBol
10
83 kgLienhard
11
73 kgSchultz
14
68 kgMaldonado
16
57 kgTietema
18
74 kgHagen
20
65 kgJules
21
64 kgTizza
22
58 kgBonnamour
23
70 kgHenn
25
64 kgHavik
26
73 kgBiermans
27
78 kgAriesen
28
70 kgvan den Berg
29
78 kgJanssens
32
74 kgAriesen
33
70 kgKrul
34
68 kgKorsæth
35
84 kg
Weight (KG) →
Result →
84
57
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | PARRINELLO Antonino | 68 |
2 | BARBIER Rudy | 79 |
3 | VALLÉE Boris | 79 |
5 | VAN HOOYDONCK Nathan | 78 |
6 | DE BONDT Dries | 73 |
7 | BUDDING Martijn | 74 |
10 | BOL Cees | 83 |
11 | LIENHARD Fabian | 73 |
14 | SCHULTZ Nick | 68 |
16 | MALDONADO Anthony | 57 |
18 | TIETEMA Bas | 74 |
20 | HAGEN Carl Fredrik | 65 |
21 | JULES Justin | 64 |
22 | TIZZA Marco | 58 |
23 | BONNAMOUR Franck | 70 |
25 | HENN Luca | 64 |
26 | HAVIK Piotr | 73 |
27 | BIERMANS Jenthe | 78 |
28 | ARIESEN Tim | 70 |
29 | VAN DEN BERG Julius | 78 |
32 | JANSSENS Jimmy | 74 |
33 | ARIESEN Johim | 70 |
34 | KRUL Stef | 68 |
35 | KORSÆTH Truls Engen | 84 |