Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
De Bondt
1
73 kgBudding
2
74 kgParrinello
3
68 kgLienhard
6
73 kgSchultz
7
68 kgGmelich Meijling
9
77 kgBarbier
10
79 kgTizza
15
58 kgBonnamour
17
70 kgVallée
18
79 kgHenn
19
64 kgVereecken
20
72 kgHavik
21
66 kgJules
22
64 kgvan den Berg
23
78 kgJanssens
24
74 kgBiermans
25
78 kgKruopis
26
80 kgAriesen
27
70 kgHivert
28
62 kgPremont
30
69 kgFonseca
31
56 kgKrul
32
68 kg
1
73 kgBudding
2
74 kgParrinello
3
68 kgLienhard
6
73 kgSchultz
7
68 kgGmelich Meijling
9
77 kgBarbier
10
79 kgTizza
15
58 kgBonnamour
17
70 kgVallée
18
79 kgHenn
19
64 kgVereecken
20
72 kgHavik
21
66 kgJules
22
64 kgvan den Berg
23
78 kgJanssens
24
74 kgBiermans
25
78 kgKruopis
26
80 kgAriesen
27
70 kgHivert
28
62 kgPremont
30
69 kgFonseca
31
56 kgKrul
32
68 kg
Weight (KG) →
Result →
80
56
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | DE BONDT Dries | 73 |
2 | BUDDING Martijn | 74 |
3 | PARRINELLO Antonino | 68 |
6 | LIENHARD Fabian | 73 |
7 | SCHULTZ Nick | 68 |
9 | GMELICH MEIJLING Jarno | 77 |
10 | BARBIER Rudy | 79 |
15 | TIZZA Marco | 58 |
17 | BONNAMOUR Franck | 70 |
18 | VALLÉE Boris | 79 |
19 | HENN Luca | 64 |
20 | VEREECKEN Nicolas | 72 |
21 | HAVIK Yoeri | 66 |
22 | JULES Justin | 64 |
23 | VAN DEN BERG Julius | 78 |
24 | JANSSENS Jimmy | 74 |
25 | BIERMANS Jenthe | 78 |
26 | KRUOPIS Aidis | 80 |
27 | ARIESEN Tim | 70 |
28 | HIVERT Jonathan | 62 |
30 | PREMONT Christophe | 69 |
31 | FONSECA Armindo | 56 |
32 | KRUL Stef | 68 |